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Faculté Polydisciplinaire, Université Chouaib Doukkali, B.P 299, 2400 El Jadida, Morocco
and
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Abstract. Using computer simulations, we show that metastable states still occur in two-lane traffic models
with slow to start rules. However, these metastable states no longer exist in systems where aggressive drivers
(which do not look back before changing lanes) are present. Indeed, the presence of only one aggressive
driver in the circuit, triggers the breakdown of the high flow states. In these systems, the steady state is
unique and its relaxation dynamics should depend on the lane changing probability pch and the number
of aggressive drivers present in the circuit. It is found also that the relaxation time τ diverges as the form
of a power-law: τ ∝ p−β

ch , β = 1.

PACS. 02.50.-Ey Stochastic processes – 05.45.-a Nonlinear dynamics and chaos – 45.70.Vn Granular
models of complex systems; traffic flow 89.40.+k

Recently, cellular automata (CA) traffic models are used
enormously in order to understand the complex dynamic
behavior of the traffic in roadways (see the review [1]).
In CA, time and space are discrete. The space is repre-
sented as a uniform lattice of cells with finite number of
states, subject to a uniform set of rules, which drives the
behavior of the system. These rules compute the state of
a particular cell as a function of its previous state and
the state of the neighboring cells. The most popular CA
model for traffic flow on one-lane roadway is the NaSch
model [2]. Despite its simplicity, the model is capable of
capturing some essential features observed in realistic traf-
fic like density waves or spontaneous formation of traffic
jams. To describe more complex situations such as multi-
lane traffic, extensions of the NaSch model have been pro-
posed where additional rules are added for lane changing
cars.

Barlovic et al. [3] found metastable states in their ve-
locity dependent randomization (VDR) which is an ex-
tension of the NaSch model. The one-lane VDR model
belongs to the class of CA models with “slow-to-start”
rules. These models show an hysteresis effect which is a
consequence of the non-unique dependence of the flow on
the density. The above characteristic behavior of traffic
flow is also observed in two-lane traffic models. Indeed,
Awazu [4] showed the appearance of several branches and
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hysteresis in the relation between traffic flow and car den-
sity.

To establish the existence of metastable states,
Barlovic et al. started their simulations of the VDR model
from two different initial configurations, the megajam and
the homogeneous state. The megajam consists of one large
compact cluster of standing cars. In the homogeneous
state, cars are distributed periodically with equal con-
stant gap between successive cars (with one larger gap
for incommensurate densities). If the initial configuration
is homogeneous, one obtains the upper branch, for some
interval of densities [ρ1, ρ2], in which each car moves freely
with maximal velocity (see Fig. 1). This upper branch is
metastable with an extremely long life-time. If the initial
configuration is megajam, one obtains the lower branch
which is phase separated. The phase separated state con-
sists of a large jam (jammed region) and a free-flow region
where each car moves freely. It is known that the lifetime
of the metastable states depends on the system length L.
Yet, the simulation results indicate that ∆ρ = ρ1− ρ2 de-
creases with larger system sizes and is expected to vanish
for L→∞, i.e. the jammed branch is stable in that limit.
Therefore the non-unique behaviour of the fundamental
diagram is only observable if finite system sizes are con-
sidered (see [1] page 93).

As vehicular traffic usually evolved in multi-lane roads,
some interesting question is not yet studied. Does multi-
lane version of the VDR model always exhibits metastable
states?
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Fig. 1. Illustration of the variation of the flow J in the two-
lane VDR traffic models as a function of the density of cars
and for different values of the discarded time tdis (pch = 0.10).

The NaSch model with VDR rule is a one-dimensional
probabilistic CA which consists of N cars moving on a
one-dimensional lattice of L cells with periodic boundary
conditions (the number of vehicles is conserved). Each cell
is either empty, or occupied by just one vehicle with veloc-
ity v = 1, 2, ..., vmax. We denote by xk and vk the position
and the velocity of the kth car at time t respectively. The
number of empty cells in front of the kth car is denoted
by dk = xk+1 − xk − 1 and called hereafter as the gap.
Space and time are discrete. At each discrete time-step
t → t + 1 the system update is performed in parallel for
all cars according to the following four subrules:
R1: VDR, p(vk) = p0 for vk = 0 and p(vk) = p for vk > 0;
R2: Acceleration. vk ← min (vk + 1, vmax);
R3: Slowing down, vk ← min (vk, dk);
R4: Randomization, vk ← max (vk − 1, 0) with probabil-
ity p(vk);
R5: Motion, the car is moved forward according to its new
velocity, xk ← xk + vk.

In two-lane traffic models, lane changing of vehicles
are performed according to some additional rules [5-9]. In
this paper, we shall adopt the symmetric exchange rules
which are defined by the following criteria [6]:

1. min(vk + 1, vmax) > dk;
2. dk,other > dk and dk,back > lback;
3. pch > rand.

Here dk,other (resp. dk,back) denotes the gap on the target
lane in front of (resp. behind) the car that wants to change
lanes. Two different formulas are assigned to the param-
eter lback. For aggressive drivers, i.e., vehicles which do
not look back before changing lanes, we choose lback = 0.
For careful drivers, i.e., vehicles which respect the safety
criterion, we choose lback = vb

o + 1, where vb
o is the veloc-

ity of the following car in the target lane. Finally, pch is
the lane-changing probability and rand stands for a ran-
dom number between 0 and 1. Hereafter, we shall denote
by VDRMNa the two-lane VDR traffic models where Na

represents the number of aggressive drivers present in the
circuit.

The update in the two-lane model is divided into two
sub-steps: in one sub-step, cars may change lanes in par-
allel following the above lane changing rules and in the
other sub-step each car may move effectively by the for-
ward movement rules as in the single-lane traffic.

We performed computer simulations of the two-lane
model with the following parameters, (p0 = 0.01, p = 0.7
and vmax = 5). The size of the lattice is given by L = 1000.
Starting from an initial configuration (homogeneous or
megajam) the system evolved in time steps with respect
to the above dynamical rules. For each simulation run, we
discarded some number (tdis) of time steps and we per-
formed averages of the flow over tav = 50000 time steps.
The duration of each run is “tdis + tav”. The procedure
is then repeated for a number 100 of different realizations
of the homogeneous (or megajam) initial configurations.
The average over all the different realizations gives a mean
value of the flow.

Figure 1 illustrated the variation of the flow J , in two-
lane VDR traffic models, as a function of the density of
cars and for different values of the discarded time tdis. We
noticed that the flow in both lanes are equal since sym-
metric lane changing are considered. First, we shall con-
sider the case where only one aggressive driver is present
in the circuit. So, if the homogeneous initial state is used,
a higher branch of the flow is observed for some interval of
densities [ρ1, ρ2] whenever tdis is small enough. When in-
creasing enough tdis, the high branch interval diminished
and disappeared completely at certain limit of tdis. No-
tice that this phenomena occurred also for the NS model
with very small randomization p. In contrast, the upper
branch in the fundamental diagram of the VDRM0 does
not change when one increases the time tdis (Fig. 1). This
shows clearly that the hysteresis exist in the fundamental
diagram of the VDRM0 model but not in the one of the
VDRM1.

To clarify more the above results, we shall consider the
time evolution of the flow for some fixed density ρ = 0.12
(ρ1 < ρ < ρ2) and for the homogeneous and megajam
initial states (Fig. 2). It is shown that in contrast to the
VDRM0, where the homogeneous state is metastable with
an extremely long life-time, this state does not exist in
VDRM1. Yet, in this later, the flow corresponding to the
homogeneous initial configuration decreases with time un-
til reaching the value corresponding to the megajam initial
configuration. The breakdown of the homogeneous struc-
ture in the two lanes is due to the occurrence of stopped
cars provoked by the abrupt lane changing of the aggres-
sive driver. Figure 3 shows the evolution of the density of
stopped cars in the lanes when starting from the initial
homogeneous state. In VDRM0, no stopped cars exist in
the circuit because all cars respect the safety criteria of
lane changing. However, in VDRM1, the density increases
with time until it reaches a stationary value. Stopped cars
act as perturbations for the free flow region and as such
trigger the breakdown of the high flow states.
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Fig. 2. Time evolutions of the flow for homogeneous and mega-
jam initial states (ρ = 0.12 and pch = 0.10).

Fig. 3. Time evolution of the density of stopped cars when
starting from the initial homogeneous state (ρ = 0.12, Na = 1
and pch = 0.10).

In Figure 4, we show the cluster size distribution in the
steady state of VDRM1 for different lane-changing prob-
ability pch. The cluster means here a string of successive
stopped cars in a single lane of the two-lane model, i.e.
we are considering only compact jams in a single lane. As
the symmetric lane-changing rules are considered here, the
cluster sizes distribution in the two lanes must be equal.
We observe from Figure 4 the bimodal nature of the clus-
ter size distribution as pch � 1. Large clusters appear in
the lanes but there are by far many more small-sized clus-
ters than large ones. Furthermore, with decreasing pch, the
probability of small clusters increases while that of large
clusters diminishes. If pch = 0, which corresponds to the
single lane VDR model, almost all cars are congested in
one large cluster with the exception of a few isolated cars.
This is the well known phase separated state.

Fig. 4. The cluster size distribution in the steady state for
different lane-changing probability pch (ρ = 0.12 and Na = 1).

Fig. 5. Time evolutions of the flow and the density of stopped
cars, when starting from homogeneous initial configuration, for
several values of Na (ρ = 0.12 and pch = 0.10).

In this section, we shall investigate the relaxation dy-
namics of VDRMNa for different values of Na and pch,
when starting from the homogeneous initial condition.
This is done by plotting the time evolutions of the flow
and computing their relaxation times. Hence, the greater
is the number of aggressive drivers, the faster is the sys-
tem relaxation (Fig. 5). When decreasing the probability
of lane changing pch, one sees that the equilibration is
delayed. Indeed, in this case, the abrupt lane changes of
aggressive cars become less frequent and the number of
stopped cars becomes small (Fig. 6).

To study numerically the relaxation time correspond-
ing to an observable A we shall use the nonlinear relax-
ation function [10]:

φ(t) = [A(t)−A(∞)]/[A(0)−A(∞)]. (1)
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Fig. 6. Time evolutions of the flow and the density of stopped
cars, when starting from homogeneous initial configuration, for
several values of pch (ρ = 0.12 and Na = 1).

The corresponding nonlinear relaxation time

τ =
∫ ∞

0

φ(t)dt. (2)

The condition that the system is well equilibrated is

tM0 � τ (3)

where M0 is the number of Monte Carlo steps that have
to be excluded in the averaging of the observable A. In
Figure 7, we plotted the variation of the relaxation time τ
of the observable J near the limit pch → 0. As a result, the
relaxation time is found to diverge as pch → 0. Moreover,
we see that τ follows a power law behavior of the form,

τ ∝ p−β
ch . (4)

Except for some minor fluctuations, the dynamic expo-
nent β remains unchanged when varying the number of
aggressive drivers present in the circuit. For example,
β ≈ 0.9798± 0.0290 for Na = 1 and β ≈ 0.9801± 0.0315
for Na = 3. Assuming that the parameter pch is rate of
transition for the dynamics of the model, and as it was
demonstrated in reference [11], the exponent β is expected
to be theoretically equal to one.

In summary, we have shown that the presence of ag-
gressive drivers in the circuit breakdowns the state of high
traffic flow. In theses systems neither phase separation
nor metastability can occur and a new stationary state
takes place. Indeed, the abrupt lane changing of aggres-
sive drivers force the succeeding cars on the destination
lane to decelerate enough; leading therefore to the occur-
rence of stopped cars and then the formation of jams.

Fig. 7. Variations of the relaxation time τ near the limit pch →
0 (ρ = 0.12).

In the NS model, the cluster sizes distribution de-
creases exponentially while in VDRM0, it should depend
on the initial state. Yet, for some density ρ in the hysteresis
region (ρ1 < ρ < ρ2), no clusters appear in the metastable
homogeneous state. However, a big cluster persists in the
phase separated state. Nevertheless, in VDRMNa where
Na �= 0, the stationary state is composed by small and big
clusters. The distribution of these clusters should depend
on the lane-changing probability pch. As pch decreases the
relaxation time τ of the system increases and diverges at
the limit pch → 0. The relaxation behaviour follows a
power law behavior of the form, τ ∝ p−β

ch , β = 1).
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